Im Scheinwerferlicht: Winzige „Helden“ in den Tiefen von Ostsee und Schwarzem Meer

Im Scheinwerferlicht: Winzige „Helden“ in den Tiefen von Ostsee und Schwarzem Meer

Mikrobiologen vom Leibniz-Institut für Ostseeforschung in Warnemünde (IOW) beschreiben erstmals umfassend ein Bakterium, das an den Grenzen so genannter „Todeszonen“ in Ostsee und Schwarzem Meer die Ausbreitung giftigen Schwefelwasserstoffes verhindert.

Sauerstoff ist auch unter Wasser ein lebenswichtiges Element. Weltweit treten in den Meeren jedoch mit zunehmender Tendenz Sauerstoff-Minimum-Zonen auf. Zu den prominentesten Vertretern dieses Phänomens gehören die so genannten „Todeszonen“ in der Ostsee und dem Schwarzem Meer. Hier herrscht am Boden regelmäßig, bzw. im Falle des Schwarzen Meeres sogar permanent, Sauerstoffmangel, begleitet vom Auftreten toxischen Schwefelwasserstoffs (Sulfid). Aber auch in Meeresregionen, die für die globale Fischereiwirtschaft von enormer Bedeutung sind, wie die nährstoffreichen Auftriebsgebiete an der Südwestküste Afrikas, treten Sauerstoffminimumzonen auf.

Wegen der hohen ökonomischen Schäden und der postulierten und in Ansätzen bereits beobachteten Zunahme dieser Phänomene arbeiten weltweit Biogeochemiker und Mikrobiologen zusammen mit Physikalischen Ozeanographen an der Erforschung der Mechanismen. Dass die Ausbreitung der Sulfide durch Bakterien verhindert werden kann, weiß man bereits seit einiger Zeit. Unklar war jedoch, wie dieser Prozess genau funktioniert, da die beteiligten Organismen kaum bekannt waren.

Den Mikrobiologen des IOW gelang es nun erstmals, einen Hauptakteur bei der Sulfid-Entgiftung in Sauerstoffminimumzonen zu isolieren, zu kultivieren und hinsichtlich seiner Physiologie zu untersuchen. Zusammen mit Kollegen des Max-Planck-Instituts für marine Mikrobiologie in Bremen konnte außerdem seine genetische Ausstattung umfassend beschrieben werden.

„Sulfurimonas gotlandica“ ist die vorläufige Bezeichnung dieses Vertreters der so genannten Epsilonproteobakterien, den die Warnemünder in der Grenzschicht zwischen Sauerstoff-haltigem (oxischem) und Sauerstoff-freiem (anoxischem) Wasser im Gotlandbecken in der zentralen Ostsee in großer Häufigkeit fanden. Seine Eigenschaften sind erstaunlich: bei der Wahl seiner Energiequellen beschränkt sich dieses Bakterium nicht auf Sulfid, sondern ist äußerst flexibel und kann deshalb sowohl im oxischen als auch im anoxischen Wasser leben. Die genetische Analyse zeigt, dass es mit einer Umweltsensorik und einer hohen Beweglichkeit ausgestattet ist, die es ihm ermöglichen, die energetisch günstigsten Umgebungen aktiv aufzusuchen. Zu der ökologisch so bedeutenden Fähigkeit der Sulfidentgiftung gesellen sich weitere wichtige Eigenschaften: Die Zellen sind in der Lage, Nitrat zu elementarem Stickstoff zu reduzieren (die so genannte Denitrifizierung, die überdüngten Gewässern hilft, einen Teil des Nährstoffs Stickstoff los zu werden), und können die Energie dazu benutzen, im Dunkeln CO2 zu fixieren, um so Biomasse aufzubauen.

Mit „S. gotlandica“ haben die Warnemünder Mikrobiologen nun der Wissenschaft einen Modellorganismus zur Verfügung gestellt, der einerseits repräsentativ für eine ganze Gruppe von relativ ungewöhnlichen Bakterien ist, an dem andererseits so wichtige Prozesse wie die Sulfidentgiftung modellhaft im Labor studiert werden können. Dies wird es der wissenschaftlichen Gemeinschaft insgesamt erleichtern, marine „Todeszonen“ zu verstehen und eventuell sogar aktiv beeinflussen zu können.

Die Arbeitsgruppe um Klaus Jürgens hat damit einmal mehr bewiesen, dass die Ostsee mit ihren sehr wechselhaften Umweltbedingungen und starken Gradienten ein ideales „Modell-Meer“ für die Untersuchung weltweit auftretender Prozesse ist.

Die beschriebenen Arbeiten wurden mit Unterstützung der Deutschen Forschungsgemeinschaft und dem Bundesministerium für Bildung und Forschung durchgeführt. Die Ergebnisse sind nachzulesen unter:

Grote, J., Schott, T., Bruckner, C.G., Glöckner, F.O., Jost, G., Teeling, H., Labrenz, M., Jürgens, K. (2012): Genome and physiology of a model Epsilonproteobacterium responsible for sulfide detoxification in marine oxygen depletion zones. PNAS 109: 506-510.

Das IOW ist Mitglied der Leibniz-Gemeinschaft, zu der zurzeit 87 Forschungsinstitute und wissenschaftliche Infrastruktureinrichtungen für die Forschung gehören. Die Ausrichtung der Leibniz-Institute reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Sozial- und Raumwissenschaften bis hin zu den Geisteswissenschaften. Bund und Länder fördern die Institute gemeinsam. Insgesamt beschäftigen die Leibniz-Institute etwa 16.800 MitarbeiterInnen, davon sind ca. 7.800 WissenschaftlerInnen, davon wiederum 3.300 NachwuchswissenschaftlerInnen. Der Gesamtetat der Institute liegt bei mehr als 1,4 Mrd. Euro, die Drittmittel betragen etwa 330 Mio. Euro pro Jahr. (www.leibniz-gemeinschaft.de)

Kommentar verfassen

Trage deine Daten unten ein oder klicke ein Icon um dich einzuloggen:

WordPress.com-Logo

Du kommentierst mit Deinem WordPress.com-Konto. Abmelden / Ändern )

Twitter-Bild

Du kommentierst mit Deinem Twitter-Konto. Abmelden / Ändern )

Facebook-Foto

Du kommentierst mit Deinem Facebook-Konto. Abmelden / Ändern )

Google+ Foto

Du kommentierst mit Deinem Google+-Konto. Abmelden / Ändern )

Verbinde mit %s