Korallenriffe verlieren durch Ozeanversauerung ihr Zooplankton

Ein von Ozeanversauerung betroffenes tropisches Korallenriff; Milne Bay Provinz, Papua Neu-Guinea. A tropical reef, which is affected by ocean acidification. Photo was taken in the Milne Bay Province, Papua Neu-Guinea.
Ein von Ozeanversauerung betroffenes tropisches Korallenriff; Milne Bay Provinz, Papua Neu-Guinea.
A tropical reef, which is affected by ocean acidification. Photo was taken in the Milne Bay Province, Papua Neu-Guinea.

Tropische Korallenriffe verlieren durch Ozeanversauerung bis zu zwei Drittel ihres Zooplanktons. Zu diesem Ergebnis kommt ein deutsch-australisches Forscherteam, welches die Riffe um Kohlendioxid-Austrittsstellen vor der Küste Papua Neuguineas untersucht hat. An diesen vulkanischen Quellen entweicht so viel Kohlendioxid aus dem Meeresboden, dass das Wasser jenen Säuregrad besitzt, den Wissenschaftler für die Zukunft der Weltmeere vorhersagen. Den Rückgang des Zooplanktons erklären die Forscher mit dem Verlust geeigneter Versteckplätze. „Korallenriffe verlieren durch Ozeanversauerung ihr Zooplankton“ weiterlesen

Ozeanversauerung bedroht Dorsch-Nachwuchs im Atlantik

Internationale Forschergruppe unter Leitung des GEOMAR weist erstmals erhöhte Sterblichkeit für Larven nach

Die zunehmende Ozeanversauerung könnte die Sterblichkeit frisch geschlüpfter Dorschlarven verdoppeln. Die Bestände dieser wirtschaftlich wichtigen Fischart würden dadurch bei unveränderter Nutzung unter massiven Druck geraten. In zwei mehrwöchigen Versuchen ermittelten Mitglieder des deutschen Forschungsverbunds BIOACID erstmals Raten für die Sterblichkeit von Dorsch in der Westlichen Ostsee und in der Barentssee unter einem Grad der Versauerung, den die Fische gegen Ende dieses Jahrhunderts erleben könnten. Darauf aufbauende Modellrechnungen zur Bestandsdynamik zeigen, dass die Nachwuchsproduktion auf ein Viertel bis ein Zwölftel des bisherigen Wertes sinken könnte – ein Alarmsignal für das Fischereimanagement. „Ozeanversauerung bedroht Dorsch-Nachwuchs im Atlantik“ weiterlesen

Climate Change bleached 60% of Maldives coral reefs

iucn-corals_aug16

Photo: Andre Seale

Maldives coral reefs under stress from climate change: research survey reveals over 60% of corals bleached
Preliminary findings of a comprehensive scientific survey examining the impact of the climate change-related 2016 mass bleaching in the Maldives indicate that all reefs surveyed were affected by the event. Approximately 60% of all coral colonies assessed – and up to 90% in some sites – were bleached.
Higher than average sea surface water temperatures, linked to an El Niño Southern Oscillation Event, have caused mass coral bleaching around the world in 2016.

„Climate Change bleached 60% of Maldives coral reefs“ weiterlesen

Einige Bodenorganismen im Meer können saure Umgebung überleben

Schlangensterne am Meeresboden im Nordost-Atlantik. Foto: Serpent project
Schlangensterne am Meeresboden im Nordost-Atlantik.
Foto: Serpent project

Der Meeresboden ist ein besonders artenreicher Lebensraum für kalkbildende Arten. Seeigel, Seesterne, Kalkalgen und viele Schalentiere wie Muscheln sind hier zuhause. Diese kalkbildenden marinen Organismen spielen für das Ökosystem Ozean eine wichtige Rolle, denn sie erfüllen zahlreiche Funktionen. So sind sie Nahrungslieferant für andere Organismen oder speichern Kohlenstoff. Bereits heute nimmt der Ozean rund ein Viertel des vom Menschen ausgestoßenen Treibhausgases Kohlendioxid (CO2) aus der Atmosphäre auf – mit weitreichenden Folgen für die chemische Zusammensetzung des Meerwassers und die Lebenswelt vieler mariner Organismen. „Einige Bodenorganismen im Meer können saure Umgebung überleben“ weiterlesen

Klimawandel, Todeszonen und Massen an Bakterien

Der Klimawandel lenkt unsere Aufmerksamkeit auf wachsende Sauerstoffminimumzonen in den Ozeanen. Neu entdeckte SAR11-Bakterien verbrauchen dort lebenswichtigen Stickstoff.

In ausgedehnten Bereichen der Weltmeere, den sogenannten Sauerstoffminimumzonen (oxygen minimum zones, OMZs), gibt es keinen messbaren Sauerstoff. Neu entdeckte Bakterien verbrauchen dort auch noch andere lebenswichtige Moleküle. Sie tragen dazu bei, die ohnehin schon toten Bereiche noch ein bisschen toter zu machen. „Klimawandel, Todeszonen und Massen an Bakterien“ weiterlesen

Ozeanversauerung – die Grenzen der Anpassung

Emiliania huxleyi-Zellen in einer elektronenmikroskopischen Aufnahme. Foto: Kai Lohbeck, GEOMAR
Emiliania huxleyi-Zellen in einer elektronenmikroskopischen Aufnahme. Foto: Kai Lohbeck, GEOMAR

Weltweit längstes Labor-Experiment mit der Kalkalge Emiliania huxleyi zeigt, dass evolutionäre Anpassung an Versauerung nur eingeschränkt möglich ist –

Die wichtigste einzellige Kalkalge der Weltmeere, Emiliania huxleyi, ist grundsätzlich in der Lage, sich durch Evolution an Ozeanversauerung anzupassen. Das bisher längste Evolutionsexperiment mit diesem Organismus zeigt jedoch, dass das Anpassungspotenzial nicht so groß ist, wie ursprünglich angenommen. So konnte sich die Wachstumsrate unter erhöhten Kohlendioxid-Konzentrationen auch nach vier Jahren nicht weiter nennenswert verbessern. Die Kalkbildung war sogar geringer als bei heutigen Zellen von Emiliania huxleyi. Die Studie zeigt, dass die evolutiven Effekte im Phytoplankton komplexer sind, als bisher angenommen. „Ozeanversauerung – die Grenzen der Anpassung“ weiterlesen

Ozeanversauerung: Marine Baumeisterin verliert Stabilität

red_algae_bioacid

Proben von Lithothamnion glaciale im Labor. Foto: Federica Ragazzola

Koralline Rotalge bildet bei erhöhtem Kohlendioxid-Gehalt empfindlichere Zellen

Rotalgen zählen zu den bedeutendsten Baumeistern im Lebensraum Meer. Doch bei steigenden Kohlendioxid-Konzentrationen und zunehmender Ozeanversauerung könnte es ihnen schwerer fallen, anderen Pflanzen und Tieren eine Existenzgrundlage zu bieten. Experimente am GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel sowie Messungen am GEOMAR, an der Universität Bristol und der Universität Western Australia ergaben, dass die Art Lithothamnion glaciale ihre Widerstandskraft gegen Erosion und Fraß einbüßen könnte. Damit wäre eine wichtige Grundlage der artenreichen Ökosysteme am Meeresboden in Gefahr. Die im Fachmagazin Scientific Reports veröffentlichten Erkenntnisse werfen ferner die Frage auf, ob koralline Algen ein verlässlicher Indikator für Temperaturen vergangener Erdzeitalter sind.

Im Zuge der globalen Veränderungen und der zunehmenden Versauerung der Ozeane könnte eine wichtige Basis für Lebensräume am Meeresboden verlorengehen. Lithothamnion glaciale – eine rot-violette koralline Alge, deren Strukturen eine Vielzahl an marinen Organismen, darunter auch Larvenstadien wirtschaftlich wichtiger Fischarten, beherbergen – bildet bei steigenden Kohlendioxid-Konzentrationen weniger stabile Zellen. Dadurch kann ihre Widerstandskraft gegen Erosion und Fraß leiden. Dies haben Untersuchungen eines Teams von Wissenschaftlern des GEOMAR Helmholtz-Zentrums für Ozeanforschung Kiel sowie der Universitäten von Bristol, Portsmouth und Western Australia ergeben. Ihre Ergebnisse veröffentlichten die im Fachmagazin Scientific Reports.

Koralline Algen bilden ihre Zellwände üblicherweise aus einer Form von Kalzit, die eine große Menge an Magnesium enthält. Während ihres Wachstums entwickeln sie kreisförmige Bänder, die an Baumringe erinnern. Im Sommer gewachsene Bänder enthalten mehr Magnesium als diejenigen, die im Winter entstanden. Um das Wachstum und die Anreicherung mit Magnesium zu überprüfen, hielten Wissenschaftler Lithothamnion glaciale unter aktuellen Kohlendioxid-Konzentrationen und bei Werten, die für die Zukunft erwartet werden. Wassertemperatur und Lichtverhältnisse wurden stabil gehalten.

„Unter einem erhöhten Kohlendioxid-Anteil arbeiteten die Algen weniger Magnesium in ihre Zellwände ein, und die Wände blieben dünner als bei gegenwärtigen Konzentrationen. Auch deren Struktur war verändert“, fasst Dr. Federica Ragazzola, Biologin am Institut für Meereswissenschaften an der Universität Portsmouth zusammen. Ragazzola führte ihr Experiment im Jahr 2010 im Rahmen des deutschen Forschungsprojekts zur Ozeanversauerung BIOACID (Biological Impacts of Ocean Acidification) am GEOMAR durch. „Wir sehen zwei mögliche Gründe für den Magnesium-Schwund: Entweder haben die Algen magnesium-reiches Kalzit gegen eine weniger lösliche Zusammensetzung ausgetauscht oder sie haben einen Teil des Kalzits aufgrund der Versauerung eingebüßt. In jedem Fall verliert Lithothamnion ihre Elastizität und Härte. So kann sie leichter beschädigt werden.“ Die Wissenschaftler vermuten daher, dass die Alge nicht in der Lage sein wird, ihre wichtige Funktion als Ökosystem-Ingenieurin beizubehalten.

Weil sie Veränderungen der Temperatur und der Licht-Intensität als Gründe für den Rückgang der Magnesiumkonzentrationen in ihrem Experiment ausschließen können, interpretieren die Forscher ihn als eindeutige Reaktion auf die Ozeanversauerung. Dies hat auch Auswirkungen auf die Rekonstruktion des Klimas vergangener Erdzeitalter: „Das Verhältnis von Magnesium zu Kalzium in Kalkalgen wurde häufig als Anhaltspunkt für Temperaturen verwendet. Aber da unsere Proben bei konstanten sieben Grad Celsius gehalten wurden, können wir Veränderungen in der Magnesiumkonzentration nicht auf die Temperatur zurückführen. Ohne eine Information zum Säuregrad können Temperatur-Rekonstruktionen, die ausschließlich auf dem Verhältnis von Magnesium zu Kalzium basieren, leicht in die Irre führen“, betont Dr. Jan Fietzke vom GEOMAR.

Der Physiker hat kürzlich mit einer innovativen Kombination von Lasertechnik und Isotopenanalytik pH-Werte der vergangenen 120 Jahre aus dem Nordpazifik rekonstruiert. „Die aktuelle Publikation ist ein hervorragendes Beispiel für die Zusammenarbeit mit unseren britischen Kollegen, die sich während der ersten Phase des Projekts BIOACID entwickelt hat“, so Fietzke. „Die Analyse biologischer und chemischer Prozesse mittels solcher ortsaufgelöste Analysen, wird uns noch eine ganze Reihe spannender Einblicke eröffnen.“

Originalveröffentlichung:
Ragazzola, F., L.C. Foster, C.J. Jones, T B. Scott, J. Fietzke, Matt R. Kilburn, and D.N. Schmidt (2016): Impact of high CO2 on the geochemistry of the coralline algae Lithothamnion glaciale. Scientific Reports, 6:20572, http://dx.doi.org/10.1038/srep20572

BIOACID in Kürze:
Unter dem Dach von BIOACID (Biological Impacts of Ocean Acidification) untersuchen zehn Institute, wie marine Lebensgemeinschaften auf Ozeanversauerung reagieren und welche Konsequenzen dies für das Nahrungsnetz, die Stoff- und Energieumsätze im Meer sowie schließlich auch für Wirtschaft und Gesellschaft hat. Das Projekt wird vom Bundesministerium für Bildung und Forschung (BMBF) unterstützt. Die Koordination liegt beim GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel. Eine Liste der Mitglieds-Institutionen und weitere Informationen finden sich unter www.bioacid.de.